COURSE OUTLINE

This online course builds on the delegates existing knowledge of QGIS. It comprises a series of presentations, demos and computer practical sessions using FREE open source GIS software. The example datasets are taken from a variety of fields.

Delegates are introduced to advanced analysis techniques using both raster and vector data. The course includes a basic introduction to the PostgreSQL/PostGIS enterprise database as well as the Python programming language. The course is designed for existing users of QGIS that want to expand their knowledge and carry out higher-level analysis.

This course is intended for those who have either completed our Introduction to QGIS course or have equivalent knowledge and experience.

ANTICIPATED COURSE OUTCOMES / ACHIEVEMENTS

Aims and objectives

- To develop delegates understanding of the fundamental concepts of GIS including its strengths and limitations.
- To expand on the concept of Open Source software.
- To introduce the more advanced functionality of QGIS software package.
- To teach the advanced skills needed to obtain, import, manipulate, analyse, interpret, manage and output spatial data in order to investigate topics in the delegate’s area of interest.
- To demonstrate real-world uses of GIS.

Learning outcomes - by the end of the course, delegates will have a knowledge and understanding of:

- Working with spatial databases including importing existing data sets.
- Manipulating coordinate systems in QGIS.
- Advanced field calculations.
- Working with topologies.
- Vector processing including tools such as union.
- Raster processing and how to use the raster calculator.
- Graphical Modeller.
- PostGIS databases.
Advanced QGIS Classroom based

<table>
<thead>
<tr>
<th>Session</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Session 1: Group training** 9:30 – 4:30 | 1 – Spatial databases
Recap on GIS data types
SpatiaLite databases
PostgreSQL / PostGIS
ESRI file geodatabases
Shapefiles & GeoPacks
Creating drop down menus (Value Map)
Exercise 1a – SpatiaLite databases
Exercise 1b – PostGIS databases | 2 – Manipulating coordinate systems in QGIS
Fundamentals of coordinate systems
Datums
Parameters in QGIS
What system is best?
Exercise 2 – Manipulating coordinate systems | 3 – Introduction to Python
Python as a language
Python in QGIS
Python Console
Syntax
Pitfalls
Exercise 3 – Introduction to python in QGIS | 4 – Advanced Field Calculations, Expressions and Actions
Field calculator refresher
Advanced Field calculations
Functions
Expressions
Actions
Exercise 4 – Field calculation | 5 – Advanced Editing
Editing recap
Snapping
Feature topology
Topology checker
Reshaping features
Splitting features
Advanced digitising (CAD style)
Forms and Field widgets
Exercise 5 – Advanced digitising |
| **Session 2: Group training** 9:30-4:30 | 6 – Advanced Symbologies, Labelling and Presentation of data
Labelling using expressions
Data defined labelling
Matching label colour to features
Setting label properties
Label engine
Label priority
Creating an Atlas and dynamic maps
Exercise 6a – Advanced symbologies and Presentation of data
Exercise 6b – Creating an Atlas | 7 – Vector processing in QGIS
Processing framework
Bath processing
Geoprocessing tools
Exercise 7 – Spatial analysis case study | 8 – Raster processing in QGIS
Raster menu
Raster calculator
Interpolation Using GRASS
Exercise 8 – Interpolation and raster algebra | 9 – Graphical Modeller
What is Graphical Modeller?
Defining inputs
Algorithms
Saving and loading a model
Editing a model
Documenting a model
Exercise 9 – Graphical modeller | 10 – Consultancy exercise |